Metal-Catalyzed Thermo-Catalytic Decomposition and Continuous Catalyst Generation

Author:

Nkiawete Mpila Makiesse1ORCID,Vander Wal Randy Lee1ORCID

Affiliation:

1. The EMS Energy Institute and the Department of Energy and Mineral Engineering, Penn State University, University Park, PA 16802, USA

Abstract

In this study, metal dusting is utilized to initiate a two-stage thermo-catalytic decomposition (TCD) process. Stage 1 starts with metal-catalyzed TCD, and in stage 2 the metal-catalyzed carbon catalyzes additional TCD. TEM is presented of the early- versus late-stage TCD to qualitatively illustrate the second-stage TCD by the metal-catalyzed carbons. Corresponding SEM illustrates differences in growth type and surface density between early versus late reaction times, with backscattered imaging differentiating the first- versus second-stage TCD. TGA supports the microscopic inference of a second carbon phase by the presence of an early (low-temperature) reaction peak, characteristic of low-structure or disordered carbon as the second-stage TCD carbon. Raman analysis confirms that the second-stage carbon deposit is more disordered and unstructured, especially at 1000 °C, supported by the ID/IG and La value changes from 0.068 to 0.936 and 65 nm to 4.7 nm, respectively. To further confirm second-stage TCD occurrence upon pre-catalyzed carbons, two carbon blacks are tested. Exposing a combination of edge and basal or exclusively basal sites for the graphitized form, they afford a direct comparison of TCD carbon nanostructure dependence upon the initial carbon catalyst nanostructure. Pre-oxidation of the stainless-steel wool (SSW) prior to TCD is advantageous, accelerating TCD rates and increasing carbon yield relative to the nascent SSW for an equivalent reaction duration.

Funder

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Gas Phase Chemical Physics program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3