Rational Engineering of Mesorhizobium Imine Reductase for Improved Synthesis of N-Benzyl Cyclo-tertiary Amines

Author:

Zhang Zi-Han1,Wang An-Qi1,Ma Bao-Di1,Xu Yi1ORCID

Affiliation:

1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

The effective synthesis of N-benzyl cyclo-tertiary amines using imine reductase, key components in natural products and pharmaceutical synthesis, is a green approach. Traditional methods faced challenges with enzyme activity and selectivity. This study focused on enhancing Mesorhizobium imine reductase (MesIRED) for better N-benzyl cyclo-tertiary amine production. Through alanine scanning and consensus mutation, 12 single-site MesIRED mutants were identified from 23 candidates, showing improved conversion of N-benzylpyrrolidine and N-benzylpiperidine. Notably, mutants from I177, V212, I213, and A241 significantly boosted conversions. The best-performing mutant for N-benzylpyrrolidine, MesIREDV212A/I213V (M1), increased conversion from 23.7% to 74.3%. For N-benzylpiperidine, MesIREDV212A/I177A/A241I (M2) enhanced conversion from 22.8% to 66.8%. Tunnel analysis revealed M1 and M2 have more efficient tunnels for larger product movement compared to wild-type MesIRED. Using recombinant E. coli coexpressing MesIRED and glucose dehydrogenase (GDH), high conversions were achieved: 75.1% for N-benzylpyrrolidine (M1) and 88.8% for N-benzylpiperidine (M2). A preparative experiment resulted in 86.2% conversion and 60.2% yield for N-benzylpiperidine. This research offers an efficient method for engineering IRED, significantly improving conversion and selectivity for N-benzyl cyclo-tertiary amines, aiding drug synthesis and providing insights into rational design of other enzymes.

Funder

Project of Leading Talents in Shandong Taishan Industry

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3