Investigating the Impact of Na2WO4 Doping in La2O3-Catalyzed OCM Reaction: A Structure–Activity Study via In Situ XRD-MS

Author:

Wang Danyu1ORCID,Lang Junyu1,Qiu Zhehao1,Ding Ningxujin1,Yang Yong1

Affiliation:

1. School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Road, Shanghai 201210, China

Abstract

The La2O3 catalyst exhibits good performance in OCM reactions for its promising C2 selectivity and yield. Previous studies have affirmed that the formation of carbonates in La2O3 impedes the catalyst’s activity as a result of poisoning from CO2 exposure. In this study, a series of Na2WO4-impregnated La2O3 catalysts were synthesized to investigate the poisoning-resistant effect. The bulk phase and kinetics of the catalysts were analyzed in reactors employed with in situ XRD-MS and online MS, focusing on the CO2 adsorption on La2O3 and the phase transition process to La2O2CO3 in temperature zone correlated to OCM light-off. In situ XRD analysis revealed that, with Na2WO4 doped, CO2 exposure at elevated temperatures formed La2O2CO3 in tetragonal crystal phases, exhibiting distinctive differences from the hexagonal phase carbonates in undoped commercial La2O3. The ability to develop tetragonal or monoclinic La2O2CO3 was suggested as a descriptor to assess the sensitivity of La2O3 catalysts to CO2 adsorption, a tunable characteristic found in this study through varying Na2WO4 doping levels. Coupled XRD-MS analysis of CO2 adsorption uptake and phase change further confirmed a positive dependence between the resistivity of La2O3 catalyst to CO2 adsorption and its low-temperature C2 selectivity. The results extended the previous CO2 poisoning effect from multiple perspectives, offering a novel modification approach for enhancing the low-temperature performance of La2O3 catalysts in OCM.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Analytical Instrumentation Center

SPST

ShanghaiTech University

Ministry of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3