BioTemplated Fe3+-Doped g-C3N4 Heterojunction Micromotors for the Degradation of Tetracycline through the Photo-Fenton Reaction

Author:

Gan Qingbao1,Zhang Jianwei1,Wang Jinglin1,Wei Yuntian1,Chen Shikun1,Cai Shuguang1,Xiao Xueqing1,Zheng Chan12ORCID

Affiliation:

1. School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China

2. Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou 350118, China

Abstract

The excessive discharge of antibiotics into aquatic systems is a major issue in many countries worldwide and poses a threat to human health and the sustainable development of society. Hence, developing efficient treatment methods and purification technologies to degrade antibiotics is essential. Herein, we present the synthesis of low-cost, self-propelled tubular Fe3+-incorporated graphitic carbon nitride (g-C3N4-Fe@KF) micromotors using kapok fibers (KFs) as templates and their application as photo-catalysts for the photo-Fenton degradation of tetracycline (TC) under visible-light irradiation. The g-C3N4-Fe@KF micromotors moved rapidly when being propelled by oxygen bubbles generated in a hydrogen peroxide (H2O2) solution as a result of a photo-assisted Fenton reaction. The motion behavior of the g-C3N4-Fe@KF micromotors was dependent on the concentration of H2O2 and the length of the micromotors. The propulsion mechanism was discussed in detail. The micromotors efficiently degraded antibiotics via the photo-Fenton process. Photo-Fenton degradation efficiency was attributed to the synergistic effects of the doped Fe3+ and g-C3N4 under visible-light irradiation and self-propulsion of the micromotors. In addition, the micromotors possessed good reusability, thereby efficiently realizing multiple cycles of degradation. The current work offers an avenue for the design of micromotors, using inexpensive approaches, for various potential environmental applications.

Funder

Fujian Province University Industry University Research Joint Innovation Technology Program Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3