Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO

Author:

Ye Xiaofang1ORCID,Tian Yang2ORCID,Gao Mengyao1,Cheng Fangjun1,Lan Jinshen1,Chen Han1ORCID,Lanoue Mark3ORCID,Huang Shengli124,Tian Z. Ryan234

Affiliation:

1. Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, China

2. Program of Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA

3. Department of Environmental Dynamics, University of Arkansas, Fayetteville, AR 72701, USA

4. Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.

Funder

National Natural Science Foundation of China

National Science Foundation

National Institute of Standards and Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3