Platinum on High-Entropy Aluminate Spinels as Thermally Stable CO Oxidation Catalysts

Author:

Riley Christopher1ORCID,De La Riva Andrew2,Valdez Nichole1,Alcala Ryan2,Lu Ping1,Grant Richard1,Benavidez Angelica2,Rodriguez Mark1,Datye Abhaya2ORCID,Chou Stanley S.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM 87185, USA

2. Department of Chemical and Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque, NM 87131, USA

Abstract

Thermal degradation is a leading cause of automotive catalyst deactivation. Because high-entropy oxides are uniquely stabilized at high temperatures via an increase in configurational entropy, these materials may offer new mechanisms for preventing the thermal deactivation of precious metal catalysts. In this work, we evaluated platinum loaded on simple and high-entropy aluminate spinels (MAl2O4, where M = Co, Cu, Mg, Ni, or mixtures thereof) in carbon monoxide oxidation before and after aging at 800 °C. Pt supported on all simple spinels showed significant deactivation after thermal aging compared to the fresh samples, with T90 increasing by at least 60 °C. However, Pt on high-entropy spinels had nearly the same or better activity after aging, with T90 increasing by only 6 °C at most. During aging and reduction, copper exsolved from the spinel supports and alloyed with platinum. This interaction promoted low temperature oxidation activity, presumably through weakened CO binding, but did not prevent deactivation. On the other hand, Co, Mg, and Ni constituents promoted stronger CO bonding, as evidenced by apparent negative order kinetics and poor activity at low temperatures. High-entropy spinels, containing a variety of active metals, displayed synergetic reactant adsorption capacity and cooperative effects with supported platinum particles, which collectively prevented thermal deactivation.

Funder

DOE Office of Science, Catalysis Science

Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3