Assessment of Reaction Kinetics for the Dehydrogenation of Perhydro-Dibenzyltoluene Using Mg- and Zn-Modified Pt/Al2O3 Catalysts

Author:

Garidzirai Rudaviro1ORCID,Modisha Phillimon1ORCID,Bessarabov Dmitri1ORCID

Affiliation:

1. HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa

Abstract

The catalysts utilized for the dehydrogenation of dibenzyltoluene-based liquid organic hydrogen carriers (LOHCs) remain crucial. The state-of-the-art catalyst for dehydrogenation of dibenzyltoluene-based LOHC still suffers from deactivation and by-product formation. This is crucial in terms of the efficiency of the industrial dehydrogenation plant for hydrogen production, cyclability as well as the cost of replacing the catalyst. The development of catalysts with optimum performance, minimum deactivation and low by-product formation is required to attain the full benefits of the LOHC technology. Therefore, in this study, the effect of Mg and Zn modification on Pt/Al2O3 catalyst is investigated for the catalytic dehydrogenation of perhydro-dibenzyltoluene (H18-DBT). In addition, an assessment of reaction kinetics is also conducted. High dehydrogenation performance was obtained for Mg-doped Pt/Al2O3 using a batch reactor at 300 °C and 6 h reaction time. In this case, the degree of dehydrogenation (dod), productivity and conversion obtained are 100%, 1.84 gH2/gPt/min and 99.9%, respectively. Moreover, the Mg-doped catalyst has resulted in a high turnover frequency (TOF) of 586 min−1 compared to the Zn-doped catalyst (269 min−1) and the undoped catalyst (202 min−1) at the reaction temperature of 300 °C. The amount of by-products increased with an increase in the catalytic activity, with the Pt/Mg-Al2O3 catalyst possessing the highest amount of by-products. The dehydrogenation of H18-DBT followed first-order reaction kinetics. In addition, the activation energy obtained using the Arrhenius model is 102, 130 and 151 kJ/mol for Pt/Al2O3, Pt/Zn-Al2O3 and Pt/Mg-Al2O3, respectively. Although the Mg-doped Pt/Al2O3 shows high activation energy, the higher performance of the catalyst suggests that mass transfer limitations have no major effect on the dehydrogenation reaction under the conditions used.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3