Engineering Electrode Polarity for Enhancing In Situ Generation of Hydroxyl Radicals Using Granular Activated Carbon

Author:

Sarrouf Stephanie1,Taqieddin Amir2ORCID,Ehsan Muhammad Fahad1ORCID,Alshawabkeh Akram N.1

Affiliation:

1. Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA

2. Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115, USA

Abstract

Recently, granular activated carbon (GAC) has shown its effectiveness as a cathode material for in situ ROS generation. Here, we present an electrochemically modified GAC cathode using electrode polarity reversal (PR) approach for enhanced H2O2 decomposition via 2-electron oxygen reduction reaction (2e-ORR). The successful GAC modification using PR necessitates tuning of the operational parameters such as frequency, current, and time intervals between the PR cycles. This modification enhances the GAC hydrophilicity by increasing the density of surface oxygen functionalities. After optimization of the electrode polarity, using the 20 (No PR)-2 (PR) interval and 140 mA current intensity, the •OH concentration reaches 38.9 μM compared to the control (No PR) (28.14 μM). Subsequently, we evaluated the enhanced •OH generation for the removal of glyphosate, a persistent pesticide used as a model contaminant. The modified GAC using PR removed 67.6% of glyphosate compared to 40.6% by the unmodified GAC without PR, respectively. The findings from this study will advance the utilization of GAC for in situ ROS synthesis, which will have direct implications on increasing the effectiveness of electrochemical water treatment systems.

Funder

Superfund Research Program of the National Institute of Environmental Health Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3