Perovskite Oxide Catalysts for Enhanced CO2 Reduction: Embroidering Surface Decoration with Ni and Cu Nanoparticles

Author:

Osti Andrea1ORCID,Rizzato Lorenzo1,Cavazzani Jonathan1ORCID,Meneghello Ambra1,Glisenti Antonella12ORCID

Affiliation:

1. Department of Chemical Sciences, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy

2. CNR-ICMATE, INSTM, Via F. Marzolo, 1, 35131 Padova, Italy

Abstract

The imperative reduction of carbon dioxide into valuable fuels stands as a crucial step in the transition towards a more sustainable energy system. Perovskite oxides, with their high compositional and property adjustability, emerge as promising catalysts for this purpose, whether employed independently or as a supporting matrix for other active metals. In this study, an A-site-deficient La0.9FeO3 perovskite underwent surface decoration with Ni, Cu or Ni + Cu via a citric acid-templated wet impregnation method. Following extensive characterization through XRD, N2 physisorption, H2-TPR, SEM-EDX, HAADF STEM-EDX mapping, CO2-TPD and XPS, the prepared powders underwent reduction under diluted H2 to yield metallic nanoparticles (NPs). The prepared catalysts were then evaluated for CO2 reduction in a CO2/H2 = 1/4 mixture. The deposition of Ni or Cu NPs on the perovskite support significantly enhanced the conversion of CO2, achieving a 50% conversion rate at 500 °C, albeit resulting in only CO as the final product. Notably, the catalyst featuring Ni-Cu co-deposition outperformed in the intermediate temperature range, exhibiting high selectivity for CH4 production around 350 °C. For this latter catalyst, a synergistic effect of the metal–support interaction was evidenced by H2-TPR and CO2-TPD experiments as well as a better nanoparticle dispersion. A remarkable stability in a 20 h time-span was also demonstrated for all catalysts, especially the one with Ni-Cu co-deposition.

Funder

European Union HORIZON EUROPE

Publisher

MDPI AG

Reference42 articles.

1. Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., and van Diemen, R. (2019). IPCC, 2019 Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, Cambridge University Press.

2. Extreme Climate Events Increase Risk of Global Food Insecurity and Adaptation Needs;Hasegawa;Nature Food,2021

3. Yoro, K.O., and Daramola, M.O. (2020). Advances in Carbon Capture Methods, Technologies and Applications, Elsevier.

4. Opportunities and Challenges in CO2 Utilization;Valluri;J. Environ. Sci.,2022

5. Catalytic Conversions of CO2 to Help Mitigate Climate Change: Recent Process Developments;Sahebdelfar;Process Saf. Environ. Prot.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3