Bimetallic Pt-IrOx/g-C3N4 Photocatalysts for the Highly Efficient Overall Water Splitting under Visible Light

Author:

Sidorenko Nikolay D.1ORCID,Topchiyan Polina A.2,Saraev Andrey A.1ORCID,Gerasimov Evgeny Yu.1ORCID,Zhurenok Angelina V.1ORCID,Vasilchenko Danila B.2ORCID,Kozlova Ekaterina A.1ORCID

Affiliation:

1. Federal Research Center Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia

2. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia

Abstract

Two series of bimetallic photocatalysts (0.5% Pt/0.01–0.5% IrOx/g-C3N4 and 0.1% Pt/0.01–0.1% IrOx/g-C3N4) were synthesized by the thermolysis of melamine cyanurate and a successive deposition of platinum and iridium labile complexes (Me4N)2[Pt2(μ-OH)2(NO3)8] and fac-[Ir(H2O)3(NO2)3. The synthesized photocatalysts were studied by a set of physicochemical analysis techniques. Platinum exists in two states, with up to 60% in metallic form and the rest in the Pt2+ state, while iridium is primarily oxidized to the Ir3+ state, which was determined by X-ray photoelectron spectroscopy (XPS). The specific surface area (SBET), which is determined by low-temperature nitrogen adsorption, ranges from 80 to 100 m2 g−1 and the band gap energy (Eg) value is in the range of 2.75–2.80 eV as found by diffuse reflectance spectroscopy (DRS). The activity of the photocatalysts was tested in the photocatalytic production of hydrogen from ultrapure water under visible light (λ = 400 nm). It was found that the splitting of water occurs with the formation of the stochiometric amount of H2O2 as an oxidation product. Two photocatalysts 0.5% Pt/0.01% IrOx/g-C3N4 and 0.1% Pt/0.01% IrOx/g-C3N4 showed the highest activity at 100 μmol h−1 gcat−1, which is among the highest in H2 production published for such systems.

Funder

Russian Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3