Nanocomposite PVDF/TiO2 Photocatalytic Membranes for Micropollutant Removal in Secondary Effluent

Author:

Aldana Juan C.1ORCID,Pedrosa Marta23ORCID,Silva Adrián M. T.23ORCID,Faria Joaquim L.23ORCID,Acero Juan L.1ORCID,Álvarez Pedro M.1ORCID

Affiliation:

1. Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain

2. LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

In this study, a mixed-matrix method was used to prepare PVDF polymeric membranes with different amounts of TiO2 P25 photocatalyst embedded, which were employed in filtration processes in the presence of UV radiation (LED, peak emission at 375 nm) to eliminate two aqueous micropollutants (MPs) used as model compounds (venlafaxine and metoprolol). The obtained membranes were characterized to gain insights into their texture, morphology, composition, and other catalyst-related properties that could affect the photocatalytic filtration process. For that purpose, N2 adsorption–desorption, contact angle, SEM-EDX, thermal analysis, FTIR, XPS, UV-vis DRS, and PL spectroscopy were used. Filtration tests were carried out in continuous mode using a dead-end filtration cell to evaluate the performance of the prepared membranes in removing the selected MPs. Experiments were performed both in ultrapure water and a secondary effluent from a municipal wastewater treatment plant. It was found that the synthesized membranes could effectively remove the target MPs in ultrapure water, achieving up to 99% elimination. Such process performance decreased drastically in the secondary effluent with removals below 35%. Carbonate/bicarbonate ions in the secondary effluent were identified as the main scavenging substances. Thus, after the partial removal of carbonate/bicarbonate ions from the secondary effluent, the removal of MPs achieved was above 60%.

Funder

Spanish Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación

Portuguese national funds

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3