Investigating the Catalytic Deactivation of a Pd Catalyst during the Continuous Hydrogenation of CO2 into Formate Using a Trickle-Bed Reactor

Author:

Park Kwangho1,Lee Kyung Rok1,Ahn Sunghee12,Park Hongjin3,Moon Seokyeong3ORCID,Yoon Sungho3,Jung Kwang-Deog12ORCID

Affiliation:

1. Clean Energy Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea

2. Division of Energy & Environmental Technology, KIST School, Korea National University of Science and Technology, Seoul 02792, Republic of Korea

3. Department of Chemistry, Chung Ang University (CAU), 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Abstract

The practical application of formic acid production through the hydrogenation of CO2 has garnered significant attention in efforts to tackle the challenges associated with (1) achieving net-zero production of formic acid as a chemical feedstock and (2) improving hydrogen storage and transport. This study focuses on demonstrating the continuous operation of a trickle bed reactor for converting CO2 into formate using palladium on activated carbon (Pd/AC). Optimal temperature conditions were investigated through a dynamic operation for 24 h, achieving the maximum productivity of 2140 mmolFA·gPdsurf.−1·h−1 at 150 °C and 8 MPa, with an H2/CO2 ratio of 1:1; however, catalyst deactivation was observed in the process. Stability tests performed under continuous operation at 120 °C and 8 MPa with an H2/CO2 ratio of 1:1 indicated a gradual decline in productivity, culminating in a 20% reduction after 20 h. A comprehensive analysis comparing fresh and spent catalysts revealed that the diminished catalytic activity at elevated temperatures was attributed to the partial sintering and leaching of Pd nanoparticles during the hydrogenation process. These findings offer insights for the future development of novel Pd-based catalyst systems suitable for continuous hydrogenation processes.

Funder

Ministry of Science and ICT

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3