Nickel-Based Single-Atom Alloys for Methane Dehydrogenation and the Effect of Subsurface Carbon: First-Principles Investigations

Author:

Dong Naiyuan12ORCID,Roman Tanglaw34ORCID,Stampfl Catherine12

Affiliation:

1. School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

2. The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia

3. Flinders Institute for Nanoscale Science and Technology, College of Science Engineering, Flinders University, Bedford Park, SA 5042, Australia

4. Flinders Microscopy and Microanalysis, Flinders University, Bedford Park, SA 5042, Australia

Abstract

Using ab initio calculations, the reaction path for methane dehydrogenation over a series of Ni-based single-atom alloys (Cu, Fe, Pt, Pd, Zn, Al) and the effect that subsurface carbon at the Ni(111) surface has on the reaction barriers are investigated. Due to the well-known problem of coking for Ni-based catalysts, the adsorption and associated physical properties of 0.25 ML, 1.0 ML, and 2 ML of carbon on the Ni(111) surface of various sites are first studied. It is found that the presence of subsurface carbon reduces the stability of the intermediates and increases the reaction barriers, thus reducing the performance of the Ni(111) catalyst. The presence of Al, Zn, and Pt is found to reduce the barriers for the CH4 → CH3 + H and CH3 → CH2 + H (Pt); and CH → C + H (Al, Zn) reactions, while Ni(111) yields the lowest barriers for the CH2 → CH + H reaction. These results thus suggest that doping the Ni surface with both Al or Zn atoms and Pt atoms, functioning as distinct active sites, may bring about an improved reactivity and/or selectivity for methane decomposition. Furthermore, the results show that there can be significant adparticle–adparticle interactions in the simulation cell, which affect the reaction energy diagram and thus highlight the importance of ensuring a common reference energy for all steps.

Funder

Australian Research Council

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3