Affiliation:
1. Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz 91897, Mexico
2. Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz 91700, Mexico
Abstract
Hydrolases are the most popular enzymes, and among the most valuable in biotechnological applications. Some hydrolases, such as lipases, esterases, proteases, cellulases and amylases, are used in the food industry and the production of biopharmaceuticals, biofuels, biopolymers and detergents. Of special interest are those obtained from thermophilic microorganisms. Although there is great microbial diversity in extreme environments, the investigations aimed at detecting and isolating enzymes with potential for polyester degradation such as polyethylene terephthalate (PET) are limited. In this work, we explored the metagenomic library of an oil-enriched soil sample from the “Los Humeros” geothermal field by means of in silico probes in search for enzymes potentially able to degrade polyesters. Using conserved motifs and activity-relevant sites of reported polyester hydrolases, we designed probes that allowed us to identify 6 potential polyester hydrolases in the metagenome. Three-dimensional structure prediction revealed a canonical α/β fold and a cap covering the active site of the enzymes. The catalytic triads were composed of Ser, His and Asp. Structural comparison, substrate binding site analysis and molecular docking suggested their potential as polyester hydrolases, particularly cutinases and PETases. An enzyme, REC98271, was cloned, expressed and characterized, showing thermophilic properties and preference for short-chain substrates. These findings contribute to our understanding of enzyme diversity in “Los Humeros” metagenome and their potential applications in biodegradation and recycling processes.
Funder
Tecnológico Nacional de México