A Self-Disperse Copper-Based Catalyst Synthesized via a Dry Mixing Method for Acetylene Hydrochlorination

Author:

Fu Yuru12,Sun Xi1,Zhang Jian1,Huang Jiahui1

Affiliation:

1. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Traditional methods for synthesizing single-site catalysts are typically complicated and require special chemicals due to their tendency to agglomerate. In this study, we present a self-disperse copper-based catalyst synthesized via a dry mixing method for acetylene hydrochlorination. During the reaction, the copper precursor compounds, i.e., CuBr, and CuI, were converted to CuCl. Subsequently, the formed CuCl crystals underwent a significant structural transformation, leading to the formation of small clusters and Cu single sites. The catalytic activity of 5% CuCl + C prepared through the dry mixing method decreased from 93.7% to 92.9% after 100 h of reaction under the condition of GHSV (C2H2) = 60 mL·h−1·g−1. A comparison of the 5% CuCl + C with the 5% CuCl/C obtained by the impregnation method reveals that the catalytic stability of the former was higher than the one prepared by the conventional impregnation method. The exceptional catalytic performance can be attributed to the reaction-induced active sites being highly dispersed and the porous structure of activated carbon being maximally preserved, which was confirmed by HAADF-STEM, BET, TPR, and TG. The reaction-induced dispersion of CuCl on carbon provides a new strategy for preparing single-site catalysts for acetylene hydrochlorination.

Funder

“Strategic Priority Research Program” of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3