Valorization of Chlorella Microalgae Residual Biomass via Catalytic Acid Hydrolysis/Dehydration and Hydrogenolysis/Hydrogenation

Author:

Margellou Antigoni G.1ORCID,Torofias Stylianos A.1,Iakovou Georgios1ORCID,Triantafyllidis Konstantinos S.12ORCID

Affiliation:

1. Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece

Abstract

Microalgal biomass can be utilized for the production of value-added chemicals and fuels. Within this research, Chlorella vulgaris biomass left behind after the extraction of lipids and proteins was converted to valuable sugars, organic acids and furanic compounds via hydrolysis/dehydration using dilute aqueous sulfuric acid as a homogeneous catalyst. Under mild conditions, i.e., low temperature and low sulfuric acid concentration, the main products of hydrolysis/dehydration were monomeric sugars (glucose and xylose) and furanic compounds (HMF, furfural) while under more intense conditions (i.e., higher temperature and higher acid concentration), organic acids (propionic, formic, acetic, succinic, lactic, levulinic) were also produced either directly from sugar conversion or via intermediate furans. As a second valorization approach, the residual microalgal biomass was converted to value-added sugar alcohols (sorbitol, glycerol) via hydrogenation/hydrogenolysis reactions over metallic ruthenium catalysts supported on activated carbons (5%Ru/C). It was also shown that a low concentration of sulfuric acid facilitated the conversion of biomass to sugar alcohols by initiating the hydrolysis of carbohydrates to monomeric sugars. Overall, this work aims to propose valorization pathways for a rarely utilized residual biomass towards useful compounds utilized as platform chemicals and precursors for the production of a wide variety of solvents, polymers, fuels, food ingredients, pharmaceuticals and others.

Funder

European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation

Action “RESEARCH—CREATE—INNOVATE” Β’ CALL

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3