Affiliation:
1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
2. Hubei Longzhong Laboratory, Xiangyang 441000, China
3. Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
Abstract
Photocatalysis is considered as an environmentally friendly method for both solar energy conversion and environmental purification of water, wastewater, air, and surfaces. Among various photocatalytic materials, titania is still the most widely investigated and applied, but more efforts must be carried out considering the synthesis of highly efficient photocatalysts for multifarious applications. It is thought that nanoengineering design of titania morphology might be the best solution. Accordingly, here, titania mesocrystals, assembled from crystallographically oriented nanocrystals, have been synthesized by an easy, cheap, and “green” solvothermal method (without the use of surfactants and templates), followed by simple annealing. The obtained materials have been characterized by various methods, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and diffuse reflectance spectroscopy (DRS). It has been found that the as-obtained photocatalysts exhibit a unique nanorod-like subunit structure with excellent crystalline and surface properties. However, pristine titania is hardly active for a hydrogen evolution reaction, and thus additional modification has been performed by platinum photodeposition (and silver as a reference). Indeed, the modification with only 2 wt% of noble metals results in a significant enhancement in activity, i.e., ca. 75 and 550 times by silver- and platinum-modified samples, respectively, reaching the corresponding reaction rates of 37 μmol h−1 and 276 μmol h−1. Additionally, titania mesocrystals exhibit high oxidation power under simulated solar light irradiation for the degradation of antibiotics within the tetracycline group (tetracycline (TC), ciprofloxacin (CIP), norfloxacin (NOR) and oxytetracycline hydrochloride (OTC)). It has been found that both experimental results and the density functional theory (DFT) calculations confirm the high ability of titania mesocrystals for oxidative decomposition of tetracycline antibiotics.
Funder
National Natural Science Foundation of China
National Science Centre