Reaction Kinetics and Mechanism for the Synthesis of Glycerol Carbonate from Glycerol and Urea Using ZnSO4 as a Catalyst

Author:

Wang Huajun12,Ma Jingjing1

Affiliation:

1. Hubei Key Laboratory of Material Chemistry & Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

A series of Zn salts were used as catalysts for the reaction of glycerol and urea to produce glycerol carbonate and it was found that ZnSO4 showed the highest catalytic activity. Furthermore, the effects of reaction parameters on the glycerol conversion and glycerol carbonate yield were studied in detail. The results indicated that the glycerol conversion and glycerol carbonate yield were increased with the reaction temperature, reaction time, and catalyst amount while the optimal reaction conditions were 140 °C, 240 min, catalyst amount of 5 wt% (based on the glycerol weight), and urea-to-glycerol molar ratio of 1.1:1. During the reaction, the ZnSO4 catalyst is transformed into Zn(NH3)2SO4 at the initial stage of the reaction and then further transformed into Zn(C3H6O3). Zn(C3H6O3) and (NH4)2SO4 may be the true active species for the activation of urea and glycerol, respectively. The reaction mechanism is proposed in this article. Based on the experimental results, a reaction kinetics model considering the change in volume of the reaction system was also established, and the model parameters were obtained by fitting the experimental data. The statistical results showed that the established kinetics model is accurate.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3