The Advancement of Supported Bimetallic Catalysts for the Elimination of Chlorinated Volatile Organic Compounds

Author:

Lin Hongxia12,Liu Yuxi12,Deng Jiguang12,Jing Lin12,Wang Zhiwei12,Wei Lu12,Wei Zhen12ORCID,Hou Zhiquan12ORCID,Tao Jinxiong12,Dai Hongxing12ORCID

Affiliation:

1. Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China

2. Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

Chlorinated volatile organic compounds (CVOCs) are persistent pollutants and harmful to the atmosphere, environment, and human health. The catalytic elimination of CVOCs has become a hotspot of interest due to their self-toxicity, the secondary generation of chlorinated by-products, and the Cl poisoning of catalysts. The development of high-performance, highly selective, and anti-poisoning catalysts is a critical issue. Bimetallic catalysts exhibit an improved dechlorination performance, poisoning resistance, and product selectivity through the modulation of geometrical and electronic structures. The present review article gives a brief overview of the recent advancements in the preparation of bimetallic catalysts and their catalytic CVOC elimination activities. In addition, representative case studies are provided to investigate the physicochemical properties, CVOC conversion, COx and inorganic chlorine species selectivities, and by-product control so that the structure–performance relationships of bimetallic catalysts can be established. Furthermore, this review article provides a fundamental understanding of designing bimetallic catalysts with specific active components and the desired physicochemical properties for target reactions. In the end, related perspectives for future work are proposed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3