Error Enhancement for Upper Limb Rehabilitation in the Chronic Phase after Stroke: A 5-Day Pre-Post Intervention Study

Author:

Coremans Marjan1ORCID,Carmeli Eli2ORCID,De Bauw Ineke1,Essers Bea1ORCID,Lemmens Robin34ORCID,Verheyden Geert1ORCID

Affiliation:

1. Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium

2. Department of Physical Therapy, University of Haifa, Haifa 3498838, Israel

3. Department of Neurosciences, Experimental Neurology, KU Leuven, 3000 Leuven, Belgium

4. Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium

Abstract

A large proportion of chronic stroke survivors still struggle with upper limb (UL) problems in daily activities, typically reaching tasks. During three-dimensional reaching movements, the deXtreme robot offers error enhancement forces. Error enhancement aims to improve the quality of movement. We investigated clinical and patient-reported outcomes and assessed the quality of movement before and after a 5 h error enhancement training with the deXtreme robot. This pilot study had a pre-post intervention design, recruiting 22 patients (mean age: 57 years, mean days post-stroke: 1571, male/female: 12/10) in the chronic phase post-stroke with UL motor impairments. Patients received 1 h robot treatment for five days and were assessed at baseline and after training, collecting (1) clinical, (2) patient-reported, and (3) kinematic (KINARM, BKIN Technologies Ltd., Kingston, ON, Canada) outcome measures. Our analysis revealed significant improvements (median improvement (Q1–Q3)) in (1) UL Fugl–Meyer assessment (1.0 (0.8–3.0), p < 0.001) and action research arm test (2.0 (0.8–2.0), p < 0.001); (2) motor activity log, amount of use (0.1 (0.0–0.3), p < 0.001) and quality of use (0.1 (0.1–0.5), p < 0.001) subscale; (3) KINARM-evaluated position sense (−0.45 (−0.81–0.09), p = 0.030) after training. These findings provide insight into clinical self-reported and kinematic improvements in UL functioning after five hours of error enhancement UL training.

Funder

BioXtreme

Promobilia Foundation

Publisher

MDPI AG

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3