Histidine Decorated Nanoparticles of CdS for Highly Efficient H2 Production via Water Splitting

Author:

Tojo Fumiya,Ishizaki Manabu,Kubota Shigeru,Kurihara Masato,Hirose Fumihiko,Ahmmad BashirORCID

Abstract

Pure cadmium sulfide and histidine decorated cadmium sulfide nanocomposites are prepared by the hydrothermal or solvothermal method. Scanning electron microscopy (SEM) analysis shows that the particle sizes of pure cadmium sulfide (pu/CdS) and histidine decorated cadmium sulfide prepared by the hydrothermal method (hi/CdS) range from 0.75 to 3.0 μm. However, when a solvothermal method is used, the particle size of histidine decorated cadmium sulfide (so/CdS) ranges from 50 to 300 nm. X-ray diffraction (XRD) patterns show that all samples (pu/CdS, hi/CdS and so/CdS) have a hexagonal wurtzite crystal structure but so/CdS has a poor crystallinity compared to the others. The as-prepared samples are applied to photocatalytic hydrogen production via water splitting and the results show that the highest H2 evolution rate for pu/CdS and hi/CdS are 1250 and 1950 μmol·g−1·h−1, respectively. On the other hand, the so/CdS sample has a rate of 6020 μmol·g−1·h−1, which is about five times higher than that of the pu/CdS sample. The increased specific surface area of so/CdS nanoparticles and effective charge separation by histidine molecules are attributed to the improved H2 evolution.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3