Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste

Author:

Indrawan Natarianto,Simkins BettyORCID,Kumar Ajay,Huhnke Raymond L.ORCID

Abstract

More than one billion people worldwide still lack access to electricity. Rural electrification via gasification has the potential to satisfy electricity access and demand. This study conducts an economic evaluation of rural electrification through gasification of biomass and municipal solid waste (MSW) using a 60 kW downdraft gasifier, developed at Oklahoma State University. The effects of feedstock cost, electricity selling price, feed-in-tariff, tipping fee, tax rate, and the output power are evaluated using major financial parameters: the net present value, internal rate of return, modified internal rate of return, simple payback period, and discounted payback period, and sensitivity analysis. Results show that the downdraft gasification power system offers a payback period of 7.7 years, while generating an internal rate of return, modified internal rate of return, and net present value of 10.9%, 7.7%, and $84,550, respectively. Results from a sensitivity analysis indicate that the feed-in-tariff has the greatest positive contribution to the project’s net present value. Using MSW, the gasification power system potentially reduces carbon dioxide, nitrogen oxides, and sulfur dioxide emissions as compared to direct combustion and landfill. The technology provides a promising future for rural electrification utilizing biomass and MSW whilst offering economic and environmental benefits for local communities.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference64 articles.

1. The irreversible momentum of clean energy

2. Runaway 53GW Solar Boom in China Pushed Global Clean Energy Investment Ahead in 2017;Henze,2018

3. World Energy Outlook 2017,2017

4. Recent Advances in Power Generation Through Biomass and Municipal Solid Waste Gasification;Indrawan,2018

5. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3