The Influence of Groove Structure Parameters on the Maximum Flow Resistance of a Rectangular Narrow Channel

Author:

Li GuodongORCID,Cai Dandan,Li Shanshan,Li Xiaogang,Li Pengfeng,Zuo JuanliORCID

Abstract

In the hydraulically suspended passive shutdown assembly, in order to prevent the liquid suspension rod falling too fast and the outer tube from violent impact, it is necessary to study the way to increase flow resistance. This study added grooves to the wall of the narrow channel to increase its flow resistance. Using the RNG k-ε turbulence model in Fluent, the influence of the groove structure parameters and the Reynolds number on the flow resistance of the narrow channel was discussed to find the optimal groove structure parameters. The results showed that the flow resistance of the narrow channel increased with the increase in the concave–convex ratio, and when the concave–convex ratio was small, the flow resistance decreased with increased groove thickness, while when the concave–convex ratio exceeded a certain critical value, the flow resistance increased with increased groove thickness. Additionally, the growth rate slowed down when the concave–convex ratio was greater than 3:1. As the unit length decreased, the flow resistance first increased and then decreased. When the unit length was 6 mm, the flow resistance reached the maximum. With the increase in the Reynolds number, the intensity of the local high-turbulence kinetic energy clearly increased.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Experimental research and numerical simulation of flow field near the narrow side in a rectangular narrow channel;Xu;J. Hydrodyn.,2006

2. A Overview of the Intensified Heat Exchange Research of Two phase Flows in a Narrow gap Channel;Wang;J. Eng. Therm. Energy Power,2002

3. Review of flow and boiling heat transfer in micro-scale channels;Hu;Energy Res. Inf.,2003

4. Analysis and Discussion of Flow Boundary Layer in Fully Turbulent of Narrow Rectangular Channel;Xu;Nucl. Power Eng.,2011

5. Experimental validation of the rod-dropping analysis program for hydraulically suspended passive shutdown assembly;Yuan;Appl. Sci. Technol.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3