Abstract
This article studies the exchange of self-produced renewable energy between prosumers (and with pure end consumers), through the discrete trading of energy packages and proposes a framework for optimizing this exchange. In order to mitigate the imbalances derived from discrepancies between production and consumption and their respective forecasts, the simultaneous continuous trading of instantaneous power quotas is proposed, giving rise to a time-ahead market running in parallel with a real-time one. An energy management system (EMS) based on stochastic model predictive control (SMPC) simultaneously determines the optimal bidding strategies for both markets, as well as the optimal utilisation of any energy storage system (ESS). Simulations carried out for a heterogeneous group of agents show that those with SMPC-EMS achieve savings of between 3% and 15% in their energy operation economic result. The proposed structures allows the peer-to-peer (P2P) energy trading between end users without ESS and constitute a viable alternative to avoid deviation penalties in secondary regulation markets.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献