Optimal Design Parameters for Hybrid DC Circuit Breakers Using a Multi-Objective Genetic Algorithm

Author:

Nguyen Van-VinhORCID,Nguyen Nhat-Tung,Nguyen Quang-Thuan,Bui Van-HaiORCID,Su WencongORCID

Abstract

The primary function of hybrid direct current circuit breakers (HCBs) is to quickly interrupt fault currents to protect high-voltage direct current (HVDC) systems. To enhance the reliability and stability of HVDC systems, optimal design of HCBs is required to minimize the peak fault current, interruption time, and recovery time. Therefore, this study develops a multi-objective genetic algorithm (MOGA)-based optimization model to identify the optimal parameters for HCBs. The MOGA model consists of three objective functions that provide trade-offs among reductions in the peak fault current, the interruption time, and the recovery time. The proposed algorithm is verified with a novel HCB topology using inverse current injection techniques. The performance of the HCB topology with the optimal parameters is validated in the MATLAB/Simulink environment. In addition, a comparison study between the optimal design of an HCB using the proposed algorithm and a typical HCB model is presented in this study to show the effectiveness of the proposed optimization method. Our simulation results show that the optimal parameter design of HCBs significantly reduces the magnitude of the peak fault current and operating time, thus maintaining the safe and stable operation of the entire system.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3