Deep Gene Networks and Response to Stress

Author:

Vakulenko Sergey,Grigoriev Dmitry

Abstract

We consider systems of differential equations with polynomial and rational nonlinearities and with a dependence on a discrete parameter. Such systems arise in biological and ecological applications, where the discrete parameter can be interpreted as a genetic code. The genetic code defines system responses to external perturbations. We suppose that these responses are defined by deep networks. We investigate the stability of attractors of our systems under sequences of perturbations (for example, stresses induced by environmental changes), and we introduce a new concept of biosystem stability via gene regulation. We show that if the gene regulation is absent, then biosystems sooner or later collapse under fluctuations. By a genetic regulation, one can provide attractor stability for large times. Therefore, in the framework of our model, we prove the Gromov–Carbone hypothesis that evolution by replication makes biosystems robust against random fluctuations. We apply these results to a model of cancer immune therapy.

Funder

the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Mathematical Slices of Molecular Biology;Gromov,2001

2. Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli

3. GNE: A deep learning framework for gene network inference by aggregating biological information;Kishan;BMC Syst. Biol.,2019

4. Nonlinear approximation via compositions

5. Exponential convergence of the deep neural network approximation for analytic functions;Weinan;China Sci. Math.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3