Propagation of the Malware Used in APTs Based on Dynamic Bayesian Networks

Author:

Hernandez Guillen Jose D.ORCID,Martin del Rey AngelORCID,Casado-Vara Roberto

Abstract

Malware is becoming more and more sophisticated these days. Currently, the aim of some special specimens of malware is not to infect the largest number of devices as possible, but to reach a set of concrete devices (target devices). This type of malware is usually employed in association with advanced persistent threat (APT) campaigns. Although the great majority of scientific studies are devoted to the design of efficient algorithms to detect this kind of threat, the knowledge about its propagation is also interesting. In this article, a new stochastic computational model to simulate its propagation is proposed based on Bayesian networks. This model considers two characteristics of the devices: having efficient countermeasures, and the number of infectious devices in the neighborhood. Moreover, it takes into account four states: susceptible devices, damaged devices, infectious devices and recovered devices. In this way, the dynamic of the model is SIDR (susceptible–infectious–damaged–recovered). Contrary to what happens with global models, the proposed model takes into account both the individual characteristics of devices and the contact topology. Furthermore, the dynamics is governed by means of a (practically) unexplored technique in this field: Bayesian networks.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Q-Learning Based Method to Simulate the Propagation of APT Malware;Lecture Notes in Networks and Systems;2023

2. Finding and Removing Infected T-Trees in IoT Networks;Lecture Notes in Networks and Systems;2023

3. A novel approach for detection of APT malware using multi-dimensional hybrid Bayesian belief network;International Journal of Information Security;2022-11-10

4. Reinforcement Learning Model Free with GLIE Monte-Carlo on Policy Update for Network Topology Discovery;International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022);2022-11-05

5. Bayesian Networks for Preprocessing Water Management Data;Mathematics;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3