Distributed Mechanism for Detecting Average Consensus with Maximum-Degree Weights in Bipartite Regular Graphs

Author:

Kenyeres MartinORCID,Kenyeres Jozef

Abstract

In recent decades, distributed consensus-based algorithms for data aggregation have been gaining in importance in wireless sensor networks since their implementation as a complementary mechanism can ensure sensor-measured values with high reliability and optimized energy consumption in spite of imprecise sensor readings. In the presented article, we address the average consensus algorithm over bipartite regular graphs, where the application of the maximum-degree weights causes the divergence of the algorithm. We provide a spectral analysis of the algorithm, propose a distributed mechanism to detect whether a graph is bipartite regular, and identify how to reconfigure the algorithm so that the convergence of the average consensus algorithm is guaranteed over bipartite regular graphs. More specifically, we identify in the article that only the largest and the smallest eigenvalues of the weight matrix are located on the unit circle; the sum of all the inner states is preserved at each iteration despite the algorithm divergence; and the inner states oscillate between two values close to the arithmetic means determined by the initial inner states from each disjoint subset. The proposed mechanism utilizes the first-order forward and backward finite-difference of the inner states (more specifically, five conditions are proposed) to detect whether a graph is bipartite regular or not. Subsequently, the mixing parameter of the algorithm can be reconfigured the way it is identified in this study whereby the convergence of the algorithm is ensured in bipartite regular graphs. In the experimental part, we tested our mechanism over randomly generated bipartite regular graphs, random graphs, and random geometric graphs with various parameters, thereby identifying its very high detection rate and proving that the algorithm can estimate the arithmetic mean with high precision (like in error-free scenarios) after the suggested reconfiguration.

Funder

Slovak Academy of Sciences

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference65 articles.

1. Radio transceiver consumption modeling for multi-hop wireless sensor networks;Tudose;Univ. Politeh. Buchar. Ser. C,2013

2. A Survey on Harnessing Renewable Energy Sources to Power Wireless Sensor Networks for Agriculture;Sattar;Int. J. Innov. Res. Comput. Commun. Eng.,2017

3. Routing techniques in wireless sensor networks: a survey

4. Energy conservation in wireless sensor networks: A survey

5. Average Consensus over Mobile Wireless Sensor Networks: Weight Matrix Guaranteeing Convergence without Reconfiguration of Edge Weights

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3