Abstract
In order to improve the Lindstedt-Poincaré method to raise the accuracy and the performance for the application to strongly nonlinear oscillators, a new analytic method by engaging in advance a linearization technique in the nonlinear differential equation is developed, which is realized in terms of a weight factor to decompose the nonlinear term into two sides. We expand the constant preceding the displacement in powers of the introduced parameter so that the coefficients can be determined to avoid the appearance of secular solutions. The present linearized Lindstedt-Poincaré method is easily implemented to provide accurate higher order analytic solutions of nonlinear oscillators, such as Duffing and van Der Pol nonlinear oscillators. The accuracy of analytic solutions is evaluated by comparing to the numerical results obtained from the fourth-order Runge-Kotta method. The major novelty is that we can simplify the Lindstedt-Poincaré method to solve strongly a nonlinear oscillator with a large vibration amplitude.
Funder
The Ministry of Science and Technology
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献