A Simplified Lindstedt-Poincaré Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrations

Author:

Liu Chein-ShanORCID,Chen Yung-Wei

Abstract

In order to improve the Lindstedt-Poincaré method to raise the accuracy and the performance for the application to strongly nonlinear oscillators, a new analytic method by engaging in advance a linearization technique in the nonlinear differential equation is developed, which is realized in terms of a weight factor to decompose the nonlinear term into two sides. We expand the constant preceding the displacement in powers of the introduced parameter so that the coefficients can be determined to avoid the appearance of secular solutions. The present linearized Lindstedt-Poincaré method is easily implemented to provide accurate higher order analytic solutions of nonlinear oscillators, such as Duffing and van Der Pol nonlinear oscillators. The accuracy of analytic solutions is evaluated by comparing to the numerical results obtained from the fourth-order Runge-Kotta method. The major novelty is that we can simplify the Lindstedt-Poincaré method to solve strongly a nonlinear oscillator with a large vibration amplitude.

Funder

The Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3