A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study

Author:

Arnastauskaitė JurgitaORCID,Ruzgas Tomas,Bražėnas Mindaugas

Abstract

The testing of multivariate normality remains a significant scientific problem. Although it is being extensively researched, it is still unclear how to choose the best test based on the sample size, variance, covariance matrix and others. In order to contribute to this field, a new goodness of fit test for multivariate normality is introduced. This test is based on the mean absolute deviation of the empirical distribution density from the theoretical distribution density. A new test was compared with the most popular tests in terms of empirical power. The power of the tests was estimated for the selected alternative distributions and examined by the Monte Carlo modeling method for the chosen sample sizes and dimensions. Based on the modeling results, it can be concluded that a new test is one of the most powerful tests for checking multivariate normality, especially for smaller samples. In addition, the assumption of normality of two real data sets was checked.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3