An Efficient Algorithm for Convex Biclustering

Author:

Chen JieORCID,Suzuki JoeORCID

Abstract

We consider biclustering that clusters both samples and features and propose efficient convex biclustering procedures. The convex biclustering algorithm (COBRA) procedure solves twice the standard convex clustering problem that contains a non-differentiable function optimization. We instead convert the original optimization problem to a differentiable one and improve another approach based on the augmented Lagrangian method (ALM). Our proposed method combines the basic procedures in the ALM with the accelerated gradient descent method (Nesterov’s accelerated gradient method), which can attain O(1/k2) convergence rate. It only uses first-order gradient information, and the efficiency is not influenced by the tuning parameter λ so much. This advantage allows users to quickly iterate among the various tuning parameters λ and explore the resulting changes in the biclustering solutions. The numerical experiments demonstrate that our proposed method has high accuracy and is much faster than the currently known algorithms, even for large-scale problems.

Funder

KAKENHI Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. Algorithm AS 136: A K-Means Clustering Algorithm

2. Hierarchical clustering schemes

3. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;Hastie,2017

4. Direct Clustering of a Data Matrix

5. Biclustering of expression data;Cheng;ISMB Int. Conf. Intell. Syst. Mol. Biol.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3