Long-Term Target Tracking of UAVs Based on Kernelized Correlation Filter

Author:

Yang Junqiang,Tang Wenbing,Ding Zuohua

Abstract

During the target tracking process of unmanned aerial vehicles (UAVs), the target may disappear from view or be fully occluded by other objects, resulting in tracking failure. Therefore, determining how to identify tracking failure and re-detect the target is the key to the long-term target tracking of UAVs. Kernelized correlation filter (KCF) has been very popular for its satisfactory speed and accuracy since it was proposed. It is very suitable for UAV target tracking systems with high real-time requirements. However, it cannot detect tracking failure, so it is not suitable for long-term target tracking. Based on the above research, we propose an improved KCF to match long-term target tracking requirements. Firstly, we introduce a confidence mechanism to evaluate the target tracking results to determine the status of target tracking. Secondly, the tracking model update strategy is designed to make the model suffer from less background information interference, thereby improving the robustness of the algorithm. Finally, the Normalized Cross Correlation (NCC) template matching is used to make a regional proposal first, and then the tracking model is used for target re-detection. Then, we successfully apply the algorithm to the UAV system. The system uses binocular cameras to estimate the target position accurately, and we design a control method to keep the target in the UAV’s field of view. Our algorithm has achieved the best results in both short-term and long-term evaluations of experiments on tracking benchmarks, which proves that the algorithm is superior to the baseline algorithm and has quite good performance. Outdoor experiments show that the developed UAV system can achieve long-term, autonomous target tracking.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. UAV delivery monitoring system;San,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3