Abstract
We present efficient strategies for covering classes of thin domains in the plane using unit discs. We start with efficient covering of narrow domains using a single row of covering discs. We then move to efficient covering of general rectangles by discs centered at the lattice points of an irregular hexagonal lattice. This optimization uses a lattice that leads to a covering using a small number of discs. We compare the bounds on the covering using the presented strategies to the bounds obtained from the standard honeycomb covering, which is asymptotically optimal for fat domains, and show the improvement for thin domains.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献