Abstract
New fractional operators have the aim of attracting nonlocal problems that display fractal behaviour; and thus fractional derivatives have applications in long-term relation description along with micro-scaled and macro-scaled phenomena. Formulated by fractional operators, the formulation of a dynamical system is used in applications for the description of systems with long-range interactions. Vector-borne illnesses are one of the world’s most serious public health issues with a large economic impact on the nations that are impacted. Population increase, urbanization, globalization, and a lack of public health infrastructure have all had a role in the introduction and reemergence of vector-borne illnesses during the last four decades. The control of these infections are important to lessen the economic burden of vector-borne diseases in infected regions. In this research work, we formulate the transmission process of Zika virus with the impact of sexual incidence rate and vaccination in terms of mathematics. We presented the fundamental theory of fractional operators Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) for the analysis of the proposed system. We examine our system of Zika infection and determined the endemic indicator through a next-generation matrix technique. The uniqueness and existence of the solution has been investigated through fixed point theory. Accordingly, a numerical method has been introduced to investigate the dynamical nature of the system and make a comparison of the outcomes of the operators. The impact of different input factors has been conceptualized through dynamical behaviour of the system. We observed that lowering the index of memory, the fractional system provides accurate results about the recommended Zika dynamics and dramatically reduces infected people. It has been proved that high efficacy of a vaccine can lower the level of infection. Moreover, the impact of other parameters on the system of Zika virus infection are highlighted through numerical results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献