Real-Time Decision-Support System for High-Mix Low-Volume Production Scheduling in Industry 4.0

Author:

Kocsi BalázsORCID,Matonya Michael MaikoORCID,Pusztai László PéterORCID,Budai IstvánORCID

Abstract

Numerous organizations are striving to maximize the profit of their businesses by the effective implementation of competitive advantages including cost reduction, quick delivery, and unique high-quality products. Effective production-scheduling techniques are methods that many firms use to attain these competitive advantages. Implementing scheduling techniques in high-mix low-volume (HMLV) manufacturing industries, especially in Industry 4.0 environments, remains a challenge, as the properties of both parts and processes are dynamically changing. As a reaction to these challenges in HMLV Industry 4.0 manufacturing, a newly advanced and effective real-time production-scheduling decision-support system model was developed. The developed model was implemented with the use of robotic process automation (RPA), and it comprises a hybrid of different advanced scheduling techniques obtained as the result of analytical-hierarchy-process (AHP) analysis. The aim of this research was to develop a method to minimize the total production process time (total make span) by considering the results of risk analysis of HMLV manufacturing in Industry 4.0 environments. The new method is the combination of multi-broker (MB) optimization and a genetics algorithm (GA) that uses general key process indicators (KPIs) that are easy to measure in any kind of production. The new MB–GA method is compatible with industry 4.0 environments, so it is easy to implement. Furthermore, MB–GA deals with potential risk during production, so it can provide more accurate results. On the basis of survey results, 16% of the asked companies could easily use the new scheduling method, and 43.2% of the companies could use it after a little modification of production.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3