Author:
Tang Jun,Bian Hongwei,Ma Heng,Wang Rongying
Abstract
To solve the problem of high-precision and fast initial alignment for the Strapdown Inertial Navigation System (SINS) under both dynamic and static conditions, the high-precision attitude measured by the celestial navigation system (CNS) is used as the reference information for the initial alignment. The alignment algorithm is derived in the Earth-centered inertial (ECI) frame. Compared with the alignment algorithm in the navigation frame, it is independent of position parameters and avoids the influence of the approximate error caused by the dynamic deflection angle. In addition, hull deformation is considered in attitude optimal estimation, which can realize initial the alignment of the SINS installed in various parts of the carrier. On this basis, the velocity measurement information is added to the alignment process, which further improves the accuracy and speed of the initial alignment under static conditions. The experimental results show that the algorithms proposed in this paper have better performance in alignment accuracy, speed, and stability. The attitude and velocity matching algorithm in the ECI frame can achieve alignment accuracy better than 0.6′. The attitude matching algorithm in the ECI frame has better robustness and can be used for both dynamic and static conditions, which can achieve alignment accuracy better than 1.3′.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献