Application of BiVO4–Microalgae Combined Treatment to Remove High Concentration Mixture of Sulfamethazine and Sulfadiazine

Author:

Liu Wan,Chen Shan,Zhou Han,Wang Xianyun,Xu Houtao,Wang Liqing,Zhang Wei,Chen Lijing

Abstract

Sulfonamides (SAs) are the most common and bio-refractory antibiotics detected in surface water systems, which cause long-term toxic effects on aquatic organisms. This study used the combination of a BiVO4 photocatalyst and freshwater micro-green alga (Dictyosphaerium sp.) to remove sulfadiazine (SD) and sulfamethazine (SM2) at an initial concentration of 5 mg/L (1:1 v/v) for 7 days. We set up three gradient concentrations of BiVO4 (0.5, 1 and 2 g/L) combined with the same concentration (80 mg/L) of Dictyosphaerium sp. and then prepared corresponding concentrations of pure BiVO4 and pure microalgae as controls. We evaluated the ability of BiVO4 and Dictyosphaerium sp. combined technology to remove SAs by observing the removal efficiency of antibiotics and explained the degradation mechanism of antibiotics and the key role of microalgae by studying the changes of reactive oxygen species (ROS) and inorganic ions (nitrogen, sulfur). The results showed that the degradation rate of these two SAs in the 0.5 g/L BiVO4–algae group could reach >96% within 7 d, which was higher than that in the 2 g/L BiVO4 group (93%) and the algae group (28%). The increased degradation efficiency of SAs in BiVO4 and microalgae systems was mainly due to the increased amount of ROS. Meanwhile, more SAs were degraded to inorganic compounds such as NH4+-N, NO3−-N and SO42−-S under ROS stress. It was found that microalgae can absorb the degradation products of antibiotics such as NH4+-N for their own growth, thereby reducing the toxicity of antibiotic by-products. In addition, BiVO4 had no damaging effect on the autofluorescence intensity of the microalgae. Our study provides an efficient and eco-economic approach to remove antibiotics using visible-light irradiation in aquatic environments and provides new insights into the biological removal of other antibiotic contaminants in aquatic environments.

Funder

Chinese Major Science and Technology Program for Water Pollution Control and Treatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3