Replacing Histogram with Smooth Empirical Probability Density Function Estimated by K-Moments

Author:

Koutsoyiannis DemetrisORCID

Abstract

Whilst several methods exist to provide sample estimates of the probability distribution function at several points, for the probability density of continuous stochastic variables, only a gross representation through the histogram is typically used. It is shown that the newly introduced concept of knowable moments (K-moments) can provide smooth empirical representations of the distribution function, which in turn can yield point and interval estimates of the density function at a large number of points or even at any arbitrary point within the range of the available observations. The proposed framework is simple to apply and is illustrated with several applications for a variety of distribution functions.

Publisher

MDPI AG

Subject

General Materials Science

Reference19 articles.

1. Kolmogorov, A.N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Math.

2. Kolmogorov, A.N. (1956). Foundations of the Theory of Probability, Chelsea Publishing Company. [2nd ed.].

3. Sulla determinazione empirica di una legge di distribuzione;Kolmogorov;Inst. Ital. Attuari Giorn,1933

4. Papoulis, A. (1990). Probability and Statistics, Prentice-Hall.

5. Weisstein, E.W. (2022, November 06). Plotting Position. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/PlottingPosition.html.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3