Earth Observation Data-Driven Cropland Soil Monitoring: A Review

Author:

Tziolas NikolaosORCID,Tsakiridis Nikolaos,Chabrillat SabineORCID,Demattê José A. M.ORCID,Ben-Dor Eyal,Gholizadeh AsaORCID,Zalidis George,van Wesemael BasORCID

Abstract

We conducted a systematic review and inventory of recent research achievements related to spaceborne and aerial Earth Observation (EO) data-driven monitoring in support of soil-related strategic goals for a three-year period (2019–2021). Scaling, resolution, data characteristics, and modelling approaches were summarized, after reviewing 46 peer-reviewed articles in international journals. Inherent limitations associated with an EO-based soil mapping approach that hinder its wider adoption were recognized and divided into four categories: (i) area covered and data to be shared; (ii) thresholds for bare soil detection; (iii) soil surface conditions; and (iv) infrastructure capabilities. Accordingly, we tried to redefine the meaning of what is expected in the next years for EO data-driven topsoil monitoring by performing a thorough analysis driven by the upcoming technological waves. The review concludes that the best practices for the advancement of an EO data-driven soil mapping include: (i) a further leverage of recent artificial intelligence techniques to achieve the desired representativeness and reliability; (ii) a continued effort to share harmonized labelled datasets; (iii) data fusion with in situ sensing systems; (iv) a continued effort to overcome the current limitations in terms of sensor resolution and processing limitations of this wealth of EO data; and (v) political and administrative issues (e.g., funding, sustainability). This paper may help to pave the way for further interdisciplinary research and multi-actor coordination activities and to generate EO-based benefits for policy and economy.

Funder

European Space Research Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3