Assessment of Urban Ecological Quality and Spatial Heterogeneity Based on Remote Sensing: A Case Study of the Rapid Urbanization of Wuhan City

Author:

Li JingyeORCID,Gong Jian,Guldmann Jean-MichelORCID,Yang Jianxin

Abstract

Rapid urbanization significantly affects the productivity of the terrestrial ecosystem and the foundation of regional ecosystem services, thereby detrimentally influencing the ecological environment and urban ecological security. The United Nations’ Sustainable Development Goals (SDGs) also require accurate and timely assessments of where people live in order to develop, implement and monitor sustainable development policies. Sustainable development also emphasizes the process of protecting the ecological environment for future generations while maintaining the current needs of mankind. We propose a comprehensive evaluation method for urban ecological quality (UEQ) using Landsat TM/ETM+/OLI/TIRS images to extract remote sensing information representing four ecological elements, namely humidity, greenness, heat and dryness. An improved comprehensive remote sensing ecological index (IRSEI) evaluation model is constructed by combining the entropy weight method and principal component analysis. This modeling is applied to the city of Wuhan, China, from 1995 to 2020. Spatial autocorrelation analysis was conducted on the geographic clusters of the IRSEI. The results show that (1) from 1995 to 2015, the mean IRSEI of Wuhan city decreased from 0.60 to 0.47, indicating that environmental deterioration overwhelmed improvements; (2) the global Moran’s I for IRSEI ranged from 0.535 to 0.592 from 1995 to 2020, indicating significant heterogeneity in its spatial distribution, highlighting that high and low clusters gradually developed at the edge of the city and at the city center, respectively; (3) the high clusters are mainly distributed in the Huangpi and Jiangxia districts, and the low clusters at the city center, which exhibits a dense population and intense human activity. This paper uses remote sensing index methods to evaluate UEQ as a scientific theoretical basis for the improvement of UEQ, the control of UEQ and the formulation of urban sustainable development strategies in the future. Our results show that the UEQ method is a low-cost, feasible and simple technique that can be used for territorial spatial control and spatiotemporal urban sustainable development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3