mid-DeepLabv3+: A Novel Approach for Image Semantic Segmentation Applied to African Food Dietary Assessments

Author:

Baban A Erep Thierry Roland1ORCID,Chaari Lotfi1ORCID

Affiliation:

1. Toulouse INP, University of Toulouse, Institut de Recherche en Informatique de Toulouse, 31400 Toulouse, France

Abstract

Recent decades have witnessed the development of vision-based dietary assessment (VBDA) systems. These systems generally consist of three main stages: food image analysis, portion estimation, and nutrient derivation. The effectiveness of the initial step is highly dependent on the use of accurate segmentation and image recognition models and the availability of high-quality training datasets. Food image segmentation still faces various challenges, and most existing research focuses mainly on Asian and Western food images. For this reason, this study is based on food images from sub-Saharan Africa, which pose their own problems, such as inter-class similarity and dishes with mixed-class food. This work focuses on the first stage of VBDAs, where we introduce two notable contributions. Firstly, we propose mid-DeepLabv3+, an enhanced food image segmentation model based on DeepLabv3+ with a ResNet50 backbone. Our approach involves adding a middle layer in the decoder path and SimAM after each extracted backbone feature layer. Secondly, we present CamerFood10, the first food image dataset specifically designed for sub-Saharan African food segmentation. It includes 10 classes of the most consumed food items in Cameroon. On our dataset, mid-DeepLabv3+ outperforms benchmark convolutional neural network models for semantic image segmentation, with an mIoU (mean Intersection over Union) of 65.20%, representing a +10.74% improvement over DeepLabv3+ with the same backbone.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3