Limitations of Bulk Diamond Sensors for Single-Cell Thermometry

Author:

Alessio Andrea1ORCID,Bernardi Ettore2ORCID,Moreva Ekaterina2ORCID,Degiovanni Ivo Pietro2ORCID,Genovese Marco2ORCID,Truccato Marco1ORCID

Affiliation:

1. Physics Department, University of Turin, Via P. Giuria 1, 10125 Turin, Italy

2. Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy

Abstract

The present paper reports on a Finite Element Method (FEM) analysis of the experimental situation corresponding to the measurement of the temperature variation in a single cell plated on bulk diamond by means of optical techniques. Starting from previous experimental results, we have determined—in a uniform power density approximation and under steady-state conditions—the total heat power that has to be dissipated by a single cell plated on a glassy substrate in order to induce the typical maximum temperature increase ΔTglass=1 K. While keeping all of the other parameters constant, the glassy substrate has been replaced by a diamond plate. The FEM analysis shows that, in this case, the maximum temperature increase is expected at the diamond/cell interface and is as small as ΔTdiam=4.6×10−4 K. We have also calculated the typical decay time in the transient scenario, which resulted in τ≈ 250 μs. By comparing these results with the state-of-the-art sensitivity values, we prove that the potential advantages of a longer coherence time, better spectral properties, and the use of special field alignments do not justify the use of diamond substrates in their bulk form.

Funder

PATHOS EU H2020 FET-OPEN

EMPIR

MIUR

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3