A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure

Author:

Yun Seok HwanORCID,Park Chae YeonORCID,Kim Eun Sub,Lee Dong KunORCID

Abstract

As the intensity of the urban heat island effect increases, the cooling effect of urban trees has become important. Urban trees cool surfaces during the day via shading, increasing albedo and transpiration. Many studies are being conducted to calculate the transpiration rate; however, most approaches are not suitable for urban trees and oversimplify plant physiological processes. We propose a multi-layer model for the transpiration of urban trees, accounting for plant physiological processes and considering the vertical structure of trees and buildings. It has been expanded from an urban canopy model to accurately simulate the photosynthetically active radiation and leaf surface temperature. To evaluate how tree and surrounding building conditions affect transpiration, we simulated the transpiration of trees in different scenarios such as building height (i.e., 1H, 2H and 3H, H = 12 m), tree location (i.e., south tree and north tree in a E-W street), and vertical leaf area density (LAD) (i.e., constant density, high density with few layers, high density in middle layers, and high density in lower layers). The transpiration rate was estimated to be more sensitive to the building height and tree location than the LAD distribution. Transpiration-efficient trees differed depending on the surrounding condition and plant location. This model is a useful tool that provides guidelines on the planting of thermo-efficient trees depending on the structure or environment of the city.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3