Abstract
The effective recovery of wood waste generated in wood processing and also at the end of wood product life is important from environmental and economic points of view. In a laboratory, 16 mm-thick three-layer urea–formaldehyde (UF)-bonded particleboards (PBs) were produced at 5.8 MPa and 240 °C and with an 8 s/mm pressing factor, using wood particles prepared from (1) fresh spruce wood (C), (2) a mixture of several recycled wood products (R1), and (3) recycled faulty PBs bonded with UF resin (R2). Particles from spruce wood were combined with particles from R1 or R2 recyclates in weight ratios of 100:0, 80:20, 50:50 and 0:100. In comparison to the control spruce PB, the PBs containing the R1 recyclate from old wood products were characterized by lower thickness swelling after 2 and 24 h (TS-2h and TS-24h), lower by 18 and 31%; water absorption after 2 and 24 h (WA-2h and WA-24h), lower by 33 and 28%; modulus of rupture in bending (MOR), lower by 28%; modulus of elasticity in bending (MOE), lower by 18%; internal bond (IB), lower by 33%; and resistance to decay determined by the mass loss under the action of the brown-rot fungus Coniophora puteana (Δm), lower by 32%. The PBs containing the R2 recyclate from faulty PBs were also characterized by a lower TS-2h and TS-24h, lower by 45% and 59%; WA-2h and WA-24h, lower by 61% and 51%; MOR, lower by 37%; MOE, lower by 17%; and IB, lower by 33%; however, their biological resistance to C. puteana was more effective, with a decreased Δm in the decay test, lower by 44%.
Reference60 articles.
1. Principles of Wood Science and Technology, II Wood Based Materials;Kollmann,1975
2. Non-Wood Lignocellulosic Composites
3. Nonwood bio-based materials;Nunes,2017
4. Wood-based panels from alternative raw material;Alma,2009
5. Modern Particleboard and Dry-Process Fiberboard Manufacturing;Maloney,1993
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献