Methodology for the Study of Near-Future Changes of Fire Weather Patterns with Emphasis on Archaeological and Protected Touristic Areas in Greece

Author:

Varela VassilikiORCID,Vlachogiannis DiamandoORCID,Sfetsos AthanasiosORCID,Politi Nadia,Karozis SteliosORCID

Abstract

This work introduces a methodology for assessing near-future fire weather pattern changes based on the Canadian Fire Weather Index system components (Fire Weather Index (FWI), Initial Spread Index (ISI), Fire Severity Rating (FSR)), applied in touristic areas in Greece. Four series of daily raster-based datasets for the fire seasons (May–October), concerning a historic (2006 to 2015) and a future climatology period (2036–2045), were created for the areas under consideration, based on high-resolution climate modelling with the Representative Concentration Pathway (RCP), PCR 4.5 and RCP 8.5 scenarios. The climate model data were obtained from the European Coordinated Downscaling Experiment (EURO-CORDEX) climate database and consisted of atmospheric variables as required by the FWI system, at 12.5 km spatial resolution. The final datasets of the abovementioned variables used for the study were processed at 5 km spatial resolution for the domain of interest after applying regridding based on the nearest neighbour interpolating process. Geographic Information Systems (GIS) spatial operations, including spatial statistics and zonal analyses, were applied on the series of the derived daily raster maps in order to provide a number of output thematic layers. Moreover, historic FWI percentile values, which were estimated for Greece in the frame of a past research study of the Environmental Research Laboratory (EREL), were used as reference data for further evaluation of future fire weather changes. The straightforward methodology for the assessment of the evolution of spatial and temporal distribution of Fire weather Danger due to climate change presented herewith is an essential tool for enhancing the knowledge for the decision support process for forest fire prevention, planning and management policies in areas where the fire risk both in terms of fire hazard likelihood and expected impact is quite important due to human presence and cultural prestige, such as archaeological and tourist protected areas.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3