Threshold Response Identification to Multi-Stressors Using Fish- and Macroinvertebrate-Based Diagnostic Tools in the Large River with Weir-Regulated Flow

Author:

Ryu Hui-Seong1ORCID,Heo Jun1,Park Kyoung-Jun1,Park Hae-Kyung1

Affiliation:

1. Nakdong River Environment Research Center, National Institute of Environmental Research, Daegu 43008, Republic of Korea

Abstract

Biodiversity response-based diagnostic tools are nonlinear approaches that simultaneously consider complex environmental stressors. Such approaches have been used to quantify biological responses to environmental changes. This study identified the major environmental stressors of community turnover and corresponding thresholds by applying diagnostic tools that use multiple biological assemblages in a large river with artificially controlled flow. Four Gradient Forest models were constructed using the relationships between stream biological assemblage and 66 parameters over 12 years. The multi-stressors that caused community turnover and their thresholds differed depending on the biological assemblage, even under the same environmental conditions. Specifically, they showed that operation of weirs has increased the importance of certain species (e.g., non-native species). In addition, specific-taxon response to multi-stressors analysis identified the ecological or management thresholds of endangered species, Korean endemic species, non-native species, and legal pollution indicator species, which must be managed from a biodiversity perspective. These thresholds are significant as the first reference points presented in similar ecological environments and can be used as guidelines for species over the long term. We propose that ‘true’ threshold identification requires efforts to recognize and improve the limitations of GF techniques confirmed in this study. This may ultimately enable a sustainable aquatic ecosystems maintenance and biodiversity preservation.

Funder

Ministry of Environment (ME) of the Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3