Affiliation:
1. National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
Abstract
Fiber optic distributed acoustic sensing (DAS) technology is widely used in security surveillance and geophysical survey applications. The response of the DAS system to external vibrations varies with different types of fiber optic cable connections. The mechanism of mutual influence between the cable’s characteristics and DAS measurement results remains unclear. This study proposed a dynamic model of the interaction between the optical cable and the soil, analyzed the impact of the dynamic parameters of the optical cable and soil on the sensitivity of the DAS system, and validated the theoretical analysis through experiments. The findings suggest that augmenting the cable’s bending stiffness 5.5-fold and increasing its unit mass 4.2-fold result in a discernible reduction of the system’s response to roughly 0.15 times of its initial magnitude. Cables with lower unit mass and bending stiffness are more sensitive to vibration signals. This research provides a foundation for optimizing vibration-enhanced fiber optic cables and broadening the potential usage scenarios for DAS systems.
Funder
research program of Sanya Yazhou Bay Science and Technology City
Zhongshan Municipal Bureau of Science and Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献