Study of the Water Quality Index and Polycyclic Aromatic Hydrocarbon for a River Receiving Treated Landfill Leachate

Author:

Tan Pei Jian Brenda,Ul Mustafa MuhammadORCID,Hasnain Isa Mohamed,Yaqub Asim,Ho Yeek ChiaORCID

Abstract

Rising solid waste production has caused high levels of environmental pollution. Population growth, economic patterns, and lifestyle patterns are major factors that have led to the alarming rate of solid waste production. Generally, solid wastes such as paper, wood, and plastic are disposed into landfills due to its low operation and maintenance costs. However, leachate discharged from landfills could be a problem in surfaces and groundwater if not adequately treated. This study investigated the patterns of the water quality index (WQI) and polycyclic aromatic hydrocarbons (PAH) along Johan River in Perak, Malaysia, which received treated leachate from a nearby landfill. An artificial neural network (ANN) was also applied to predict WQI and PAH concentration of the river. Seven sampling stations were chosen along the river. The stations represented the upstream of leachate discharge, point of leachate discharge, and five locations downstream of the landfill. Sampling was conducted for one year starting July 2018. Physicochemical parameters, namely pH, biological oxygen demand, chemical oxygen demand, ammoniacal nitrogen, total suspended solids, and dissolved oxygen, were used to compute the water quality index (WQI). PAH concentrations were determined by liquid–liquid extraction of water samples followed by an analysis using gas chromatography. Results showed that WQI of Johan River was under Class III where intensive treatment was required to make it suitable for drinking purposes. The highest recorded PAH concentrations were fluoranthene (333.4 ppb) in the dry season and benzo(a) pyrene (93.5 ppb) in the wet season. A correlation coefficient (Rp) for a model prediction based on WQI-ANN and TEC-ANN (toxicity equivalent concentration) in the wet and dry seasons was 0.9915, 0.9431, 0.9999, and 0.9999, respectively. ANN results showed good model performance with Rp ≈ 0.9. This study suggested that ANN is a useful tool for water quality studies.

Funder

Fundamental Research Grant Scheme FRGS

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference47 articles.

1. Policies, Challenges and Strategies for Municipal Solid Waste in Malaysia;Zainu;J. Sci. Technol. Innov. Policy,2017

2. Landfill Leachate, Generation, Composition, and Some Findings from Leachate Treatment at Swedish Plants;Morling;Land Water Resour. Eng.,2007

3. Chapter 6—Municipal Solid Waste Biochar for Prevention of Pollution from Landfill Leachate;Jayawardhana,2016

4. Primary treatment of anaerobic landfill leachate using activated carbon and limestone: batch and column studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3