Environmental Optimization of Precast Concrete Beams Using Fibre Reinforced Polymers

Author:

van Loon R. R. L. (Rick),Pujadas-Gispert Ester,Moonen S. P. G. (Faas),Blok Rijk

Abstract

Increasing importance is being attached to materials in the life-cycle of a building. In the Netherlands, material life-cycle assessments (LCA) are now mandatory for almost all new buildings, on which basis the building is then awarded a building environmental performance or MPG [Milieuprestatie Gebouwen] score. The objective of this study is to reduce the environmental–economic (shadow) costs of precast reinforced concrete (RC) beams in a conventional Dutch office building, thereby improving its MPG score. Two main optimizations are introduced: first, the amount of concrete is reduced, designing a cavity in the cross-section of the beam; second, part of the reinforcement is replaced with a fibre reinforced polymer (FRP) tube. The structural calculations draw from a combination of several codes and FRP recommendations. Hollow FRP-RC beams (with an elongated oval cavity), and flax, glass, and kenaf fibre tubes yielded the lowest shadow costs. In particular, the flax tube obtained shadow costs that were 39% lower than those of the hollow RC beam (with an elongated oval cavity); which also contributed to decreasing the shadow costs of other building components (e.g., facade), thereby reducing the MPG score of the building. However, this study also shows that it is important to select the right type of FRP as hemp fibre tubes resulted in a 98% increase in shadow costs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference39 articles.

1. Common Carbon Metric for Measuring Energy use and Reporting Greenhouse Gas Emissions from Building Operations,2009

2. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production

3. Life Cycle Assessment for Residential Buildings: A Literature Review and Gap Analysis;Ghattas,2013

4. The Dutch approach for assessing and reducing environmental impacts of building materials

5. Energy use in the life cycle of conventional and low-energy buildings: A review article

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3