Estimation of Water-Use Rates Based on Hydro-Meteorological Variables Using Deep Belief Network

Author:

Sung Jang Hyun,Ryu Young,Chung Eun-SungORCID

Abstract

This study proposed a deep learning-based model to estimate stream water-use rate (WUR) using precipitation (P) and potential evapotranspiration (PET). Correlations were explored to identify relationships among accumulated meteorological variables for various time durations (three-, four-, five-, and six-month cumulative) and WUR, which revealed that three-month cumulative meteorological variables and WUR were highly correlated. A deep belief network (DBN) based on iterating parameter tuning was developed to estimate WUR using P, PET, and antecedent stream water-use rate (DWUR). The training and validation periods were 2011–2016, and 2017–2019, respectively. The results showed that the PET-DWUR based model provided better performances in Nash–Sutcliff efficiency (NSE), root mean square error (RMSE), and determination coefficient (R2) than the P-PET-DWUR and P-DWUR models. The framework in this study can provide a forecast model for deficiencies of stream water use coupled with a weather forecast model.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3